Illustration of Star Interactions in the Southern Ring Nebula

 Illustration of Star Interactions in the Southern Ring Nebula

How did all the “partygoers” – up to five stars – create the Southern Ring Nebula? Let’s hit “rewind” and replay the interactions that might have created the scene!

First, it’s important to know that none of these illustrations are properly scaled, and three or as many as four of the stars would be too small and dim to appear in Webb’s image. Second, star 1 and star 2 are the only stars we see in the sixth and final panel above. The remaining “guests” will be known as stars 3, 4, and 5. They are all much less massive – in other words far smaller and dimmer – than stars 1 and 2.

The first illustration shows a wider field. Star 1, the most massive of this group of five stars, is the fastest to age and is responsible for creating the planetary nebula. Star 2 very slowly orbits star 1, which is easier to see in the last panel. All is relatively quiet at this stage as they orbit one another, though there is another star on the scene, number 5. It orbits star 1 far more tightly than star 2 does.

Cue the action! The second panel zooms way in on the scene – and two other companions appear in view. Star 1 has begun to swell as it ages rapidly, swallowing star 3. Through gravity, star 3 starts to draw in material from star 1 and launches jets in both directions. Star 4 is close by, but not yet interacting.

The third panel shows how much star 1 has expanded as it ages. Two companions also enter the mix. Stars 3 and 4 have sent off a series of bipolar jets. As these two stars interact, the jets they sent out are tumbled, which leads to the irregular, wavy edges of the gas and dust ejected by aging star 1. Both companions 3 and 4 are interacting within the gas and dust star 1 has ejected.

In panel 4, we zoom out to see more of the scene. Ultraviolet light and a fast, spherical wind from the newly exposed ultra-hot core of star 1 is helping to carve out its previously ejected gas and dust, creating a bubble-like cavity. There is also a leftover disk of material from the previous interactions with star 3. Star 3 is no longer visible, but star 5 is now in view. It has a wider orbit and is drawing “lines” through the ejected gas and dust from star 1 as it orbits, like a knife through a bowl of icing.

Now, it’s time to zoom out even wider! At this stage, we’re getting closer to a view of the planetary nebula we see today. The fifth panel shows the same trio – stars 1 and 2 with star 5. Now, to mix it up again: As it orbits, star 5 continues to interact with the ejected gas and dust that slowly travels farther and farther from star 1 into the surrounding space, generating the system of large rings seen in the outer nebula.

The sixth panel portrays the scene as we observe it today – by zooming all the way out, we see only stars 1 and 2 in the Southern Ring Nebula.

Now that you’re oriented, read the full recap of the potential events.

Credits

Illustration

NASA, ESA, CSA, STScI, Elizabeth Wheatley (STScI)

About The Object
Object Name Southern Ring Nebula, NGC 3132, Eight-Burst Nebula
Object Description Planetary Nebula
R.A. Position 10:06:58.54
Dec. Position -40:26:00
Constellation Vela
Distance 2,000 light-years (590 parsecs)
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.