Simulated Thermal Emission Spectrum of Exoplanet LHS 3844 b

 Simulated Thermal Emission Spectrum of Exoplanet LHS 3844 b

Possible thermal emission spectrum of the hot super-Earth exoplanet LHS 3844 b, as measured by Webb’s Mid-Infrared Instrument. A thermal emission spectrum shows the amount of light of different infrared wavelengths (colors) that are emitted by the planet. Researchers use computer models to predict what a planet’s thermal emission spectrum will look like assuming certain conditions, such as whether or not there is an atmosphere and what the surface of the planet is made of. 

This particular simulation assumes that LHS 3844 b has no atmosphere and the day side is covered in the dark volcanic rock basalt. (Basalt is the most common volcanic rock in our solar system, making up volcanic islands like Hawaii and most of Earth’s ocean floor, as well as large portions of the surfaces of the Moon and Mars.)

For comparison, the gray line represents a model spectrum of basaltic rock based on laboratory measurements. The pink line is the spectrum of granite, the most common igneous rock found on Earth’s continents. The two types of rock have very different spectra because they are made of different minerals, which absorb and emit different amounts of different wavelengths of light. 

After Webb observes the planet, researchers will compare the actual spectrum to model spectra of various rock types like these to figure out what the surface of the planet is made of.  

Credits

Illustration

NASA, ESA, CSA, Dani Player (STScI)

Science

Laura Kreidberg (MPI-A), Renyu Hu (NASA-JPL)

About The Object
Object Name LHS 3844 b
Object Description Hot super-Earth exoplanet
R.A. Position 22:41:59.09
Dec. Position –69:10:19.59
Constellation Indus
Distance 49 light-years from Earth
About The Data
Data Description Simulated secondary eclipse observation of LHS 3844 b using MIRI LRS, assuming no atmosphere and a bare rocky surface covered in basalt. (Kreidberg, et al., Cycle 1 GO Proposal )
Instrument MIRI (simulated)
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.