Galactic Center (Chandra, Hubble, Spitzer)

 Galactic Center (Chandra, Hubble, Spitzer)

An enormous swirling vortex of hot gas glows with infrared light, marking the approximate location of the supermassive black hole at the heart of our Milky Way galaxy. This multiwavelength composite image includes near-infrared light captured by NASA’s Hubble Space Telescope, and was the sharpest infrared image ever made of the galactic center region when it was released in 2009. Dynamic flickering flares in the region immediately surrounding the black hole, named Sagittarius A*, have complicated the efforts of the Event Horizon Telescope (EHT) collaboration to create a closer, more detailed image. While the black hole itself does not emit light and so cannot be detected by a telescope, the EHT team is working to capture it by getting a clear image of the hot glowing gas and dust directly surrounding it.

NASA’s upcoming James Webb Space Telescope, scheduled to launch in December 2021, will combine Hubble’s resolution with even more infrared light detection. In its first year of science operations, Webb will join with EHT in observing Sagittarius A*, lending its infrared data for comparison to EHT’s radio data, making it easier to determine when bright flares are present, producing a sharper overall image of the region. 

In the composite image shown here, colors represent different wavelengths of light. Hubble’s near-infrared observations are shown in yellow, revealing hundreds of thousands of stars, stellar nurseries, and heated gas. The deeper infrared observations of NASA’s Spitzer Space Telescope are shown in red, revealing even more stars and gas clouds. Light detected by NASA’s Chandra X-ray Observatory is shown in blue and violet, indicating where gas is heated to millions of degrees by stellar explosions and by outflows from the supermassive black hole.

Credits

Science

NASA, ESA, SSC, CXC, STScI

About The Object
Object Name Sagittarius A*
Object Description Center of the Milky Way Galaxy
R.A. Position 17h 45m 36.0s
Dec. Position -28° 55' 58.8"
Constellation Sagittarius
Distance 26,000 light-years (8 kiloparsecs)
About The Data
Data Description Spitzer Data: The Spitzer Space Telescope data were courtesy of NASA, Jet Propulsion Laboratory, and S. Stolovy (Spitzer Science Center/California Institute of Technology). Hubble Data: The Hubble component was from the HST proposal : Q.D. Wang (University of Massachusetts, Amherst), S. Stolovy (Caltech), C. Lang (University of Iowa), A. Cotera (SETI Institute), M. Muno (Caltech), M. Morris (University of California, Los Angeles), D. Calzetti (University of Massachusetts, Amherst), S. Ramirez (Caltech), and G. Schneider (University of Arizona). Chandra Data: The science team was led by Q.D. Wang (University of Massachusetts, Amherst). Image courtesy of NASA/CXC/UMass/Q.D. Wang et al.
Instrument SST>IRAC, HST>NICMOS, and CXO>ACIS
Exposure Dates September 3, 2004, and September 15, 2005 (SST), February 22 - June 5, 2008 (HST), and March 2000 - July 2007 (CXO)
Filters SST: 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns HST: F187N (Paschen-Alpha) and F190N (Paschen-Alpha continuum) CXO: 1-3 keV, 3-5 keV, 5-8 keV
About The Image
Compass Image A tapestry in shades of blue, purple, red, yellow, and white, but the bright white in the center mutes the intensity of the colors nearby. The upper left corner is full of red and pink clouds of dust and gas, with yellow stars nestled everywhere. Except for the extreme upper right corner, the right seems less dusty, the multitude of yellow stars less shrouded. The lower portion begins with dusty pink and clouds showing yellow stars poking through. Moving to the right, there are several bright pink stars, quite a few blue stars, and 3 or more large yellow star clusters shrouded in pink dust. Dust from the bright center is thicker here, like fog blanketing an area of intense star formation, small yellow stars everywhere here. Continuing to the right, through lessening dust, there are red, pink, purple, and blue stars, but fewer small yellow ones. In the right corner area are pink, red, blue, and purple stars, and a small (by comparison to the center of the image) bright area.
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.